

The Lakes of Maple Grove

Lake Water Quality Report for 2009

Maple Grove Lake Quality Commission

Prepared March 2010 by Steve McComas

The Lakes of Maple Grove Status Report - 2009

Prepared for the Maple Grove Lake Quality Commission.

Commission Members - 2009

Karen Jaeger — Council Liaison Nancy Bergstrand — Weaver Lake James Erickson — Edward Lake John Garritsen — Eagle Lake Roger Granberg — City-at-Large Steve Lane — Cedar Island Lake Kurt Paulson — Pike Lake George Schneider — Rice Lake Doug Schon — Fish Lake Catherine Thompson — City-at-Large Heather Xavier — City-at-Large

Ken Ashfeld, City Engineer, City of Maple Grove Rick Lestina, Water Resources Engineer, City of Maple Grove Mark Lahtinen, Water Resources, City of Maple Grove Sue Rice, Minutes Secretary

Prepared by Steve McComas, Blue Water Science

March 2010

Introduction and Background

The City of Maple Grove has numerous lakes and smaller water bodies within the City limits. In 2009, nine lakes were monitored over the summer months, including the three Arbor Lakes. This report summarizes the summer sampling data. A summary of general lake characteristics is shown in Table 1.

Lake	State ID Number	Size (acres)	Maximum Depth (feet)	Mean Depth (feet)	Watershed District	Total Watershed Size (ac)	Lake Classification (shallow or deep)
Fish	27-118	239	48*	19*	Elm Creek	1,990*	deep
Weaver	27-117	165	57*	21*	Elm Creek	510*	deep
Rice	27-116	333	11	5	Elm Creek	17,200	shallow
Edward	27-121	33	9.5	5.5	Elm Creek	102	shallow
Cook	27-120	16.5	20		Elm Creek		shallow
Eagle	27-111	285	37	12.6	Shingle Creek	3,220**	deep
Pike	27-111-02	75	25	6.7	Shingle Creek	919**	shallow
Cedar Island	27-119	80*	7.0*	4.6*	Shingle Creek	800**	shallow

 Table 1. General lake characteristics of Maple Grove Lakes.

* from Hennepin Conservation District

**from Met Council

Guide to Interpreting Water Quality Information

- SD = Secchi disc a black and white disc lowered into the water until it can't be seen from the surface. This is the secchi disc transparency reading.
- TP = Total phosphorus the fertilizing nutrient most responsible for causing excess algae to grow.
- Chl a = Chlorophyll a the green pigment in algae that is analyzed in the laboratory. It is correlated to the amount of algae in a lake.
- ppb = parts per billion concentrations of phosphorus and chlorophyll are often reported in ppb.

Lake Goals (based on eutrophication criteria for North Central Hardwood Forest Ecoregion)

- Secchi disc: 5-7 feet of transparency as a summer average.
- Total phosphorus: try to keep phosphorus concentrations below 40 ppb as a summer average for deep lakes and less than 60 ppb for shallow lakes.
- Chlorophyll a: try to keep chlorophyll concentrations below 14 ppb as a summer average for deep lakes and less than 20 ppb for shallow lakes.

2009 Summer Sampling Results - Status Report

The objectives of the 2009 water quality sampling program were to check the health of the lakes in the City of Maple Grove and to see if they were improving, degrading, or staying the same. Water quality parameters monitored included Secchi disc (measure of water clarity), total phosphorus (measure of the primary nutrient that stimulates algal growth), and chlorophyll (measure of the amount of algae in the water).

Water quality was checked from May through September and results are shown in Table 2. Fish and Weaver Lakes were monitored by Three Rivers Park District and Rice Lake was monitored by George Schneider as part of the CAMP program. The remaining lakes were monitored by Blue Water Science.

Weaver and South Arbor Lakes had the best transparency and Edward and Cedar Island had the lowest transparency in 2009 (Tables 2 and 3).

Significant construction occurred along the shoreland area of West Arbor Lake in August and September 2009. In September, phosphorus and chlorophyll levels were higher than normal and the Secchi disc was not as good compared to other years. When construction is completed, it is expected that West Arbor will return to normal conditions.

Table 2. Water chemistry summer averages for Maple Grove Lakes in 2009 (source:Three Rivers Park District collected data for Fish and Weaver Lakes. Other datacollected by Blue Water Science).

	May -	Sept Averages	, 2009
	Secchi Disc (ft)	Total Phosphorus (ppb)	Chl a (ppb)
Cedar Island	0.6	330	147
Cook	10.5	22.6	2.6
Eagle	5.7	44.2	29.5
Edward	2.3	149	81.7
Fish	4.6	57.9	16.5
Pike	3.5	80.6	19.9
Rice	3.5	395	151
Weaver	9.2	30.8	4.6
North Arbor	13.6	13.8	1.1
South Arbor	13.9	16.8	2.0
West Arbor	9.6	28.4	5.3

Lakes	Nort	h Ar	bor	Sou	th Ar	bor	We	st Ar	bor	Ced	ar Isl	and	(Cook		E	Eagle		E	dwar	ď		Fish			Pike			Rice		W	leave	ər
	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ΤР	Chl
May																																	
week 1*																						3.6	61.7	32.0				2.5	102	19	9.3	46.5	8.49
week 2																																	
week 3																						9.3	55.9	9.61				2.5	164	110	14.8	35.6	4.85
week 4	11.0	17	<1	15.5	17	1.3	10.0	18	1.3	0.8	171	14.1	10.8	21	5.0	10.7	26	5.0	2.6	56	8.7				4.9	56	6.2	4.0 2.5	138	98			
June																																	
week 1																						7.0	70.1	17.9							9.4	37.6	6.74
week 2																												2.0					
week 3																						4.3	59.1	21.8				6.5			8.8	32.3	6.8
week 4	8.3	15	<1	11.8	14	<1	12.8	19	1.5	0.5	314	121	8.3	25	<1	7.0	33	2.9	4.1	80	7.7	3.7	54.6	14.7	3.5	103	3.7	2.5			7.1	24	4.25
July																																	
week 1																												3.0 2.5	338	91			
week 2																						3.4	65.7	13.7							8.5	19.5	2.44
week 3																												1.0	632	500			
week 4	15.9	12	<1	14.5	17	1.6	12.2	24	3.1	0.6	506	235	9.0	30	<1	4.5	50	19.9	1.2	183	186	3.6	87	10.2	1.8	102	56.1	2.0			7.7	31.6	3.52
August																																	
week 1																												1.5					
week 2																						5.2	46.9	15.0				1.5	750	370	8.0	33	3.31
week 3																																	
week 4	15.7	13	<1	15.9	14	1.7	9.8	24	7.1	0.4	351	189	12.1	16	<1	3.1	62	95.3	1.2	223	86.0	3.0	48.4	24.9	4.2	70	9.8	5.0 3.5	529	78	9.6	26.3	3.6
Septemb	er																																
week 1																												5.5	333	56			
week 2																						3.8	47	21.4				8.5			9.1	24	2.46
week 3	17.1	12	1.3	11.8	22	4.3	3.1	57	13.7	0.6	306	177	12.2	21	5.0	3.1	50	24.6	2.1	203	123				2.9	72	23.7	6.0	566	34	8.6	28.3	3.67
week 4																						3.7	40.9	20.1									
May-Sep	temb	er A	verag	ge																					_								
	13.6	13.8	1.1	13.9	16.8	2.0	9.6	28.4	5.3	0.6	330	147	10.5	22.6	2.6	5.7	44.2	29.5	2.2	149	81.7	4.6	57.9	16.5	3.5	80.6	19.9	3.5	395	151	9.2	30.8	4.6

Table 3. Maple Grove water quality data 2009. Results for secchi disc (SD) are in feet, total phosphorus (TP) are in ppb, and chlorophyll \underline{a} (chl) are in ppb.

13.6|13.8| 1.1|13.9|16.8| 2.0| 9.6|28.4| 5.3| 0.6| 330| 147|10.5|22.6| 2.6| 5.7|44.2|29.5| 2.2| 149|81.7| 4.6|5 * Weeks: days 1-7 = week 1; days 8-14 = week 2; days 15-21 = week 3; days 22+ = week 4 ** data from CLMP

Eurasian Watermilfoil (EWM) Monitoring Summary

Eurasian watermilfoil (EWM) has been found in six lakes in Maple Grove -- Fish, Eagle, Rice and all three Arbor Lakes. EWM in all six lakes is past the point of eradication, but typically nuisance growth is limited to several shoreline areas. Eagle Lake has a small infestation and little nuisance growth. Rice Lake had a new infestation in 1996 but milfoil was not found in 1997, 1998, 2007, and 2008. It has been found in 1999 through 2006 in small bunches. Overall observations are summarized in Table 4.

Curlyleaf pondweed, also a non-native plant, is found in all lakes monitored in 2007 except for Cook Lake.

	2009 Summer
Cook	no Eurasian watermilfoil found.
Arbor - North	Eurasian watermilfoil, found in 2003.
Arbor - South	Eurasian watermilfoil, found in 2004.
Arbor - West	Eurasian watermilfoil, found in 2002.
Fish Lake	scattered Eurasian watermilfoil, found in 1993.
Eagle Lake	scattered Eurasian watermilfoil, found in 1992.
Weaver Lake	no Eurasian watermilfoil found
Rice Lake	scattered Eurasian watermilfoil, found in 1996.
Lake Edward	no Eurasian watermilfoil found
Cedar Island Lake	no Eurasian watermilfoil found

Table 4.	Summarv of	Eurasian	watermilfoil	observations	for Maple	Grove La	kes in :	2009
	•••••••••••••••••••••••••••••••••••••••			•••••				

Water Quality Summaries

Secchi Disc, Phosphorus, and Chlorophyll a

A fifteen year summary of water quality results for Maple Grove Lakes is shown in Table 5. City lakes have been stable in regard to water quality except for Lake Edward and Rice Lake. Fluctuating clarity in Lake Edward may be influenced by fish kills that occurred in 1995 and 2000. Rice Lake may be impacted by the drawdown on 1997-1998. Rice and Cedar Island Lakes have the highest phosphorus concentrations in town and Cook and Weaver have the lowest.

	Ced	ar Isl	and		Cook			Eagle		E	dwar	d		Fish			Pike			Rice		Rice We			Veave	leaver		
	SD	TP	Chl	SD	ΤР	Chl	SD	ТР	Chl	SD	ΤР	Chl	SD	TP	Chl	SD	ΤР	Chl	SD	ΤР	Chl	SD	ТР	Chl				
1995	2.0	106	73		-		5.8	51	7	5.0	61	16	6.4	51	16	3.9	78	20	2.2	233	44	7.8	40	18				
1996	1.8						5.9	33	9	8.1	104	2	7.0	55	9	3.4	66	23	2.9	453	37	6.5	35	6				
1997	1.5	117	40		-		5.4	31	11	5.8	47	4	5.4	50	17	3.6	76	24	2.3	316	39	6.6	32	10				
1998	1.4	102	44		-		5.9	29	11	4.1	46	11	5.9	46	13	3.3	70	31	3.3	469	20	6.6	40	14				
1999	1.1	203	66		-		5.9	53	23	4.5	43	13	4.8	45	19	3.9	74	35	3.5	248	35	6.4	42	21				
2000					-		9.5	36	5	5.5	45	6	4.6	53	19	4.3	65	30	5.2	175	23	6.6	43	15				
2001	2.1	78	47				11	34	18	7.1	26	4	5.4	38	17	4.9	83	30	4.5	339	22	5.5	42	38				
2002	1.8	90	55				3.3	42	67	6.7	48	13	3.6	51	26				4.2	152	18	8.3	43	20				
2003	1.1	163	116				7.0	44	31	3.2	118	102	4.5	55	37	3.5	80	60	3.2	185	35	6.6	46	31				
2004	1.0	147	133	6.2	26	4	6.8	45	28	2.2	77	47	7.9	47	29	3.5	97	65	3.9	207	36	8.9	51	40				
2005	1.1	123	134	6.6	51	2	8.8	18	20.3	2.4	104	61	5.4	40	25.4	3.5	95	54.2	4.6	214	44	16.5	23	4.4				
2006	0.7	161	173	7.5	22	33	5.8	47	36.3	1.9	95	55	3.9	49	28.6	4.3	89	46.7	3.0	187	50	14.4	25	6.6				
2007	0.8	240	194	7.8	19	5.5				1.6	115	62	4.1	51	31				2.2	206	48	9.0	35	7				
2008	0.7	455	226	8.0	20	2.4				3.2	105	67	2.7	47	17				2.6	436	51	8.0	30	7.7				
2009	0.6	330	147	10.6	22.6	2.6	5.7	44.2	29.5	2.2	149	81.7	4.6	57.9	16.5	3.5	80.6	19.9	3.5	395	151	9.2	30.8	4.56				

Table 5. Growing season averages for the Maple Grove Lakes [SD = secchi disc (ft), TP = total phosphorus (ppb), Chl \underline{a} = chlorophyll \underline{a} (ppb)].

Cedar Island Lake data: Met Council - 1995; MPCA - 1996; and Blue Water Science - 1997 through 2009. Eagle, Fish, Pike, and Weaver Lake data collected by Three Rivers Park District.

Report Card

Water quality data have been converted to grades based on a Met Council grading scale. Grades are shown in Table 6.

	Cedar Island		and		Cook		Eagle		Edward		Fish			Pike				Rice		Weaver				
	SD	TP	Chl	SD	TP	Chl	SD	ΤР	Chl	SD	TP	Chl	SD	ТР	Chl	SD	TP	Chl	SD	ΤР	Chl	SD	ΤР	Chl
1995	F	D	D				С	С	А	С	С	В	С	С	В	С	D	В	F	F	С	В	С	В
1996	F						С	В	А	В	D	А	С	С	Α	D	D	С	D	F	С	С	С	Α
1997	F	D	С				С	В	В	С	С	А	С	С	В	D	D	С	D	F	С	С	В	В
1998	F	D	D				С	В	В	С	С	В	С	С	В	D	D	С	D	F	D	С	С	В
1999	F	F	D				С	С	С	С	С	В	С	С	В	С	D	С	D	F	С	С	С	С
2000							В	С	А	С	С	А	С	С	В	С	С	С	С	F	С	С	С	В
2001	F	D	С				А	С	В	С	В	А	С	С	В	С	D	С	С	F	С	С	С	С
2002	F	D	D				D	С	D	С	С	В	D	С	С				С	D	В	В	С	В
2003	F	F	F				С	С	С	D	D	F	С	С	С	D	D	D	D	F	С	С	С	С
2004	F	D	F	С	В	А	В	С	С	F	D	С	В	С	С	D	D	D	D	F	С	В	С	С
2005	F	D	F	С	С	А	В	А	В	D	D	D	С	С	С	D	D	D	С	F	С	А	В	А
2006	F	F	F	В	А	С	С	С	С	F	D	D	С	С	С	С	D	С	D	F	D	А	В	А
2007	F	F	F	В	А	А				F	D	D	С	С	С				F	F	С	В	С	А
2008	F	F	F	В	А	А				D	D	D	D	С	В				D	F	D	В	В	А
2009	F	F	F	А	А	А	С	С	С	F	D	F	С	С	В	D	D	С	D	F	F	В	В	А

Table 6. Lake grades for Maple Grove Lakes.

Cedar Island Lake data: Met Council - 1995; MPCA - 1996; and Blue Water Science - 1997 through 2009

Arbor Lakes: Results of Arbor Lake sampling are summarized in Tables 7 and 8. All three have good water quality and low phosphorus concentrations.

		West			North		South					
	SD	TP	Chl	SD	TP	Chl	SD	TP	Chl			
May-September Average												
1999 (1 date - Aug)	3.1	18	11	6.7	20	<1	5.4	13	<1			
2001 (1 date - Sept)	5.3			16.0			8.2					
2002 (3 dates)	9.0	16	1	8.9	11	2	13.0	12	1			
2003 (5 dates)	7.0	19	4	12.3	9	3	11.7	10	3			
2004 (5 dates)	9.6	18	5	11.5	12	2	12.4	12	2			
2005 (5 dates)	10.7	28	2.4	13.2	17	3	10.7	17	2			
2006 (5 dates)	9.7	23	2	13.8	13	2	7.9	29	17			
2007 (5 dates)	9.4	19	2.6	12.1	9	2.2	11.3	15	5			
2008 (5 dates)	8.4	24	7.0	14.3	12	3.7	10.2	16	4.4			
2009 (5 dates)	9.6	28.4	5.3	13.9	13.8	1.1	13.9	16.8	2.0			

Table 7. Growing season averages for the Arbor Lakes.

Table 8. Lake grades for the Arbor Lakes.

		West			North		South						
	SD	TP	Chl	SD	TP	Chl	SD	TP	Chl				
1999	D	Α	В	С	Α	Α	С	Α	Α				
2001	С			Α			В						
2002	В	Α	А	В	Α	Α	Α	Α	Α				
2003	С	Α	Α	Α	Α	Α	Α	Α	Α				
2004	Α	Α	Α	Α	Α	Α	Α	Α	Α				
2005	Α	В	Α	Α	Α	Α	Α	Α	Α				
2006	В	В	Α	Α	Α	Α	В	В	В				
2007	В	Α	Α	Α	Α	Α	Α	Α	Α				
2008	В	В	Α	Α	Α	Α	Α	Α	Α				
2009	В	В	Α	Α	Α	Α	Α	Α	Α				

Secchi Disc Transparency Graphs

Graphs of average summer water transparency over the years for each of the major Maple Grove lakes are displayed on the next two pages. Eagle, Fish, and Weaver Lakes have summer water clarity averages generally over five feet. Cedar Island Lake generally has a summer average less than two feet. Pike and Rice Lakes averages are right around 3 to 5 feet. Transparency goals for all lakes should average 5 to 7 feet over the summer.

Total Phosphorus Graphs

Graphs of average summer water total phosphorus for the major Maple Grove Lakes (not including the Arbor Lakes) are shown on pages 8 and 9. Weaver had the lowest summer phosphorus concentration of the lakes (although the Arbor Lakes also have low phosphorus concentrations). Rice Lake and Cedar Island Lake had the highest total phosphorus in 2009.

Shingle Creek Watershed District

Cedar Island Lake has the lowest secchi disc transparency in Maple Grove. Transparency fluctuates in the remaining Maple Grove lakes.

Aquatic plants could grow to twice the average seasonal secchi disc transparency.

Aquatic plants are beneficial for lakes and help to maintain or improve water clarity.

Secchi disc.

Elm Creek Watershed District

Shingle Creek Watershed District

Elm Creek Watershed District

